

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-08/0343 of 16/09/2014

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

ROCKPANEL Durable 6 mm finish Colours / Rockclad

Product family to which the above construction product belongs:

Prefabricated mineral wool boards with organic or inorganic finish and with specified fastening system

Manufacturer:

ROCKWOOL B.V. Konstruktieweg 2 NL-6045 JD Roermond Tel. +31 475 353 000 Fax +31 475 353 550

Manufacturing plant:

ROCKWOOL B.V. / ROCKPANEL Group Konstruktieweg 2 NL-6045 JD Roermond

This European Technical Assessment contains:

19 pages including 6 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

European Assessment Document (EAD) no. EAD 090001-00-0404 for Prefabricated compressed mineral wool boards with organic or inorganic finish and with specified fastening system, edition May 2014.

This version replaces:

The previous ETA with the same number and validity from 2008-12-18 to 2013-12-18

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product General

ROCKPANEL Durable Colours 6 mm are prefabricated compressed mineral wool boards with thermo-setting synthetic binders. The boards are fastened to timber subframes. Fastening to the timber subframes is carried out with corrosion resistant nails or screws. Mechanical fasteners, joint strips and aluminium profiles are specified by the ETA-holder.

The ROCKPANEL Durable Colours panels are surface treated with a four-layer water-borne polymer emulsion coating on one side, in a range of colours.

The physical properties of the panels are indicated in table 1.

Table 1	Physical properties			
]	ROCKPANEL Durab	ole boards		
Property		Value		
Thickness		$6 \pm 0.3 \text{ mm}$		
Length, max	K	3050 mm		
Width, max		1250 mm		
Density, nor	minal	$1050 \pm 150 \text{ kg/m}^3$		
Bending stre	ength, length and	$f_{05} \ge 27 \text{ N/mm}^2$		
width				
Modulus of	elasticity	$m(E) \ge 4015$		
		N/mm ²		
Thermal con	nductivity	0,37 W/(m • K)		
Coefficient	of thermal expansion,	$\alpha = 10,5$		
length and v	width	10 ⁻⁶ °K ⁻¹		
Coefficient	of moisture	0.303 mm/m after		
expansion 2	3 °C/50 %RH to 92	4 days		
%RH				

Finishes

The finish is indicated in table 2. The paints are provided in a number of colours.

Table 2	Finish ROCKPANEL Durable boards			
ROCKPA	NEL Durable Colours:	Colourpaint		
(water-borne polymer emulsion				
coating)				

The colourfastness of the panels is indicated in table 3.

Table 3 Colourfastness	Colourfastness ROCKPANEL Colours				
Property	Value (ISO 105 A02)				
Colour fastness after	ROCKPANEL Durable				
5000 hours artificial	Colours: 3-4 or better				
weathering					

Subframes

The panels are attached to the building by fixing to a timber subframe.

The vertical battens should have a minimum thickness of 28 mm.

Appropriate preservative treatment of subframes

Use the appropriate part of EN 335 to identify the "use class" of a given service environment and geographical location. Table 1 in EN 335 will assist in determining the biological agents that can attack timber in certain situations. The user can then consider the type and duration of performance required select an appropriate level of durability and ensure that the timber or wood-based product specified has either, as a natural (see EN 350-2) or an acquired characteristic durability as the result of appropriate preservative treatment (see EN 351-1).

Joints

Aluminium profiles

The horizontal joints between the panels can be open in the case of a ventilated construction (subframe protection appears from table 4). Open joints are not watertight and the construction behind the battens shall establish the water tightness of the structure.

The horizontal joints between the panels are made with a ROCKPANEL "A" extruded aluminium chair profile or equivalent in the case of panels mechanically fixed on timber battens. The chair profile has an overlap of at least 15 mm on the board above the profile. See annex 1.

Foam gasket

A 3 mm thick EPDM foam gasket (self-adhering backside) is fixed to the timber battens. If the horizontal joint is closed with an aluminium chair profile, the vertical joint is backed with the 60 mm wide gasket and for the intermediate battens the 36 mm gasket is used.

In the case of open horizontal joints the width of the gasket is 15 mm at both sides wider than the batten.

Fasteners

The panels are mechanically fixed either to vertical timber battens or vertical timber battens with intermediate ROCKPANEL strips. The mechanical fastening to timber battens is carried out with either ROCKPANEL stainless steel screws 4.5×35 mm no 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels or Rockpanel ring shank nails $2.7/2.9 \times 32$ mm or 40 mm no 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels. See annex 3, table 8.1 and 8.2.

The maximum fixing distances, hole diameter and the design value of the axial load appears from annex 2, tables 5.1, 6.1, 6.2, 7.1 and 7.2.

The installation method with the use of fixed points and moving points appears from table 5.2 and 5.3.

2 Specification of the intended use in accordance with the applicable EAD

The boards are intended for external cladding and for fascias and soffits. The cladding on vertical timber battens with mechanically fixed boards can be carried out with or without ventilated cavities at the back.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Assessment of characteristic Characteristic 3.2 Safety in case of fire (BWR 2) Reaction to fire Classification of panels: See table 4 3.3 Hygiene, health and the environment (BWR 3) The kit does not contain/release dangerous substances Dangerous substances specified in TR 034, dated April 2013*), except Formaldehyde concentration 0,0105 mg/m³ Formaldehyde class E1 The used fibres are not potential carcinogenic No biocides are used in the ROCKPANEL boards No flame retardant is used in the boards No cadmium is used in the boards. Water vapour permeability **Durable Colours:** $s_d < 1,80$ m at 23°C and 85% RH The designer shall consider the relevant needs for ventilation and the critical moisture content for all the integrated materials. No Performance determined Water permeability incl. joints for non-ventilated applications

3.4 Safety in use (BWR 4)

In absence of national regulations the design values X_d may be calculated as indicated in the ETA (see tables 6.1, 6.1, 7.1 and 7.2). Below is mentioned the safety factors which has been used in the calculation of the design values.

Fixing position and design value X_d of the axial load M/E/C (Middle/Edge/Corner) of mechanical fixings corresponding to the wind load resistance (load acting perpendicular to the façade)

Remark:

Design value X_d obtained by dividing the characteristic value X_k by a partial factor $\gamma_M : X_d = X_k / \gamma_M$

Shear strength mechanical fixings Characteristic values

Impact resistance

For definition of use category see Annex 6 Table 12

Rockpanel screws:

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_M See Annex 2 Table 6.1 and 6.2, row (25), (26) and (27)

Rockpanel nails:

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_M

See Annex 2 Table 7.1 and 7.2, row (25), (26) and (27)

(for edge distances and distances between fasteners: see annex 2, Table 5.1)

RockPanel nails:
Failure load: 1062 N

Deformation: 12 mm

Hard body impact—steel ball 0,5 kg: Category I

Soft body impact — ball 3 kg: Category III

Characteristic

Assessment of characteristic

Dimensional stability

Cumulative dimensional change %

Coefficient of thermal expansion 10⁻⁶ °K ⁻¹

coefficient of moisture expansion 42% RH

difference after 4 days mm/m

Wind load resistance M/E/C

Length: **0,085** % Width: **0,084** % Length: 10,5.10⁻⁶ Width: 10,5.10⁻⁶ Length: 0,288 Width: 0,317

Characteristic strength Screws: 902/363/222 N Nails: 716/314/263 N

Failure load:

Screws: 4980/5412/5547 N/m² Nails: 3043/3406/5148 N/m²

Mechanical resistance of panels See section 1, table 1

3.7 Sustainable use of natural resources (BWR 7) No performance determined

3.8 Related aspects of durability and serviceability

Resistance to Hygrothermal cycles **Pass**

Resistance to Xenon Arc exposure Pass

Table 4 Reaction to fire classification

The panels have been classified in accordance with EN 13501-1 with the following parameters:

Fixing	Ventilated or non-ventilated	Vertical wooden battens
method		Durable Colours
Mechanically	Ventilated with gasket on the batten [a]	B-s2,d0
fixed		open 6 mm horizontal joint
	Ventilated with RockPanel strips 6 or 8 mm on	B-s2,d0
	the battens [b]	open 6 mm horizontal joint
	Non-ventilated	B-s1,d0
	Cavity filled with mineral wool	closed horizontal joint

[[]a] width of the gasket 15 mm at both sides wider than the batten

Field of application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

Euroclass classification

The classification mentioned in table 4 is valid for the following end use conditions:

Mounting:

 Mechanically fixed as described in table 4, which are attached to the subframe mentioned below

Substrates:

- The results are also valid for a wall made of timber frame (see "Insulation" for the backing of the panels)
- Test results are also valid for the same type of panel used without insulation, if the substrate chosen is made with Euro-class A1 or A2

Insulation:

 The panels are backed with minimal 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity

^{*)} In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

[[]b] width of the strip 15 mm at both sides wider than the batten

between the panels and the insulation (all constructions with the exception of 'non-ventilated')

 Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification

Subframe:

 Test results are also valid for the same type of panel with aluminium or steel frame

Fixings:

- Results are also valid with higher density of the fixing devices
- Test results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa

Cavity:

- The depth of the cavity is minimum 28 mm
- Unfilled or filled with insulation of mineral wool with a density 30-70 kg/m³ according to EN 13162
- Test results are also valid for other higher thickness of air space between the back of the board and the insulation

Joints:

- Vertical joints are with an EPDM foam gasket backing or RockPanel strip backing as described in table 4 and horizontal joints can be open or with an aluminium profile.
- The result from a test with an open horizontal joint is also valid for the same type of panel used in applications with horizontal joints closed by steel or aluminium profiles

The classification is also valid for the following product parameters:

Thickness

 Maximum nominal 6 mm, individual tolerances ± 0.3 mm

Density

Maximum nominal 1050 kg/m³, individual tolerances -150 / +150 kg/m³

Aspects related to the performance of the product

All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V.

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. / ROCKPANEL Group in the manufacturer's application guide technical dossier which forms part of the documentary material for this ETA. On every pallet label and/or on the protective film of every board the website is printed which guides the end user to the most actual information.

For non-ventilated use, the substrate shall be airtight.

The boards are in general mounted with a joint width of between 5 and 8 mm.

If the joints are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.

The water diffusion resistance of the boards is declared as a means for the designer to decide whether they are sufficiently vapour permeable, especially when used for cladding without ventilated cavities at the back. The designer can then establish that condensation in the entire wall as a result of water vapour diffusion will not occur or will occur only to an extent where damage is not caused during the condensation period and the wall will dry out again during the evaporation period. The designer shall consider the critical moisture content for all the integrated materials.

For non-ventilated intended use, the pressure level preceding the pressure level where leakage occurs is declared as a means for the designer to decide on the necessity of the use of a vapour control membrane.

The panels should not be taken into account when designing a timber stud wall to resist racking forces.

The holes for the fixings are drilled into the panels not less than 15 mm from a vertical edge and 50 mm from a horizontal edge (see Annex 2). The panels are fixed making sure that the screws are not over-tightened.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark

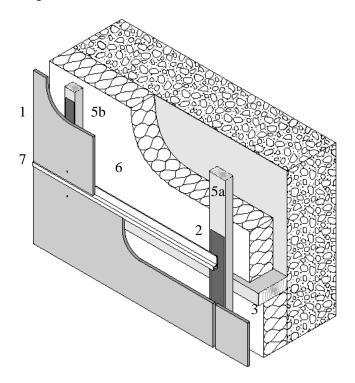
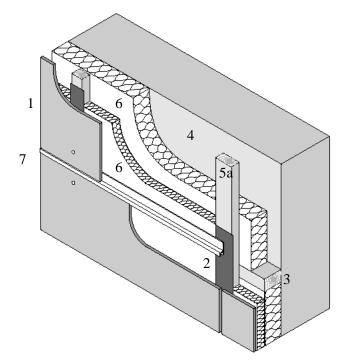
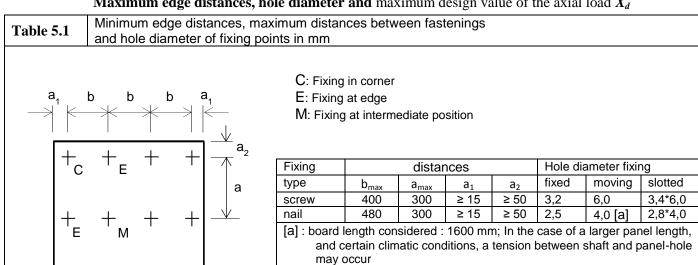
Issued in Copenhagen on 2014-09-16 by

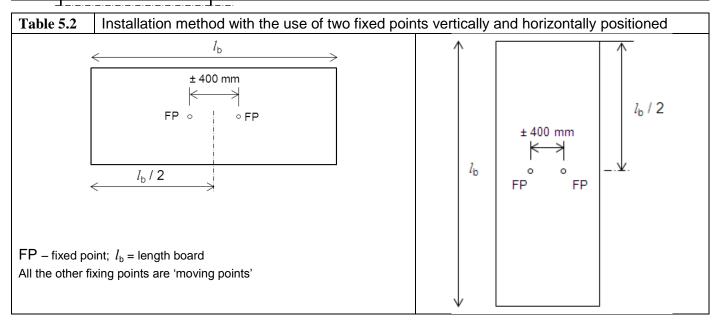
Thomas Bruun

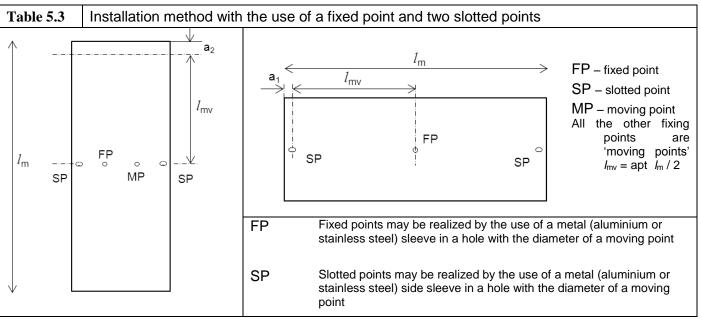
Managing Director, ETA-Danmark

Annex 1 Pre-fabricated compressed mineral wool boards with organic or inorganic finish

Figure 1. Ventilated intended use


Figure 2. Non-ventilated intended use



- 1. Compressed mineral wool board with organic or inorganic finish
- 2. EPDM foam gasket
- 3. Timber beam
- 4. Vapour barrier
- 5. Batten: a joint and b intermediate
- 6. Insulation
- 7. ROCKPANEL "A" 6 mm extruded aluminium chairprofile or equivalent

Annex 2 Maximum edge distances, hole diameter and maximum design value of the axial load X_d

Design values X_d of the **mechanical** fixings screw and nail.

In absence of national regulations the design values X_d may be calculated as indicated in the ETA (see tables 6 and 7). In these tables the safety factors are mentioned which have been used in the calculation of the design values.

Table 6.1	Characteristic axial load X_k and design value of the axial load $X_d = X_k / \gamma_M$					
	for the comb	ination scr	ew and 6 mm 'Durable	e' boards		
		of gaskets	s), with α≥ 30° [e]			
board thickn					vith the use of a	
	ne fixing in the bo	oard	M-middle	E-edge	C-corner	
pull-through		l. NI		000	400	0.40
	teristic pull-thro			668	460	340
			ufacturers declaration)	2,0	2,0	2,0
	n value X_d of the	ne puii-thro	ugn iv	334	230	170
wind suction					1	T
	ge wind load in N	I/m²		4980	5412	5547
	ge strength N			902	363	222
			nanufacturers declaration)	2,0 451	2,0	2,0
desig	design value X_d of the pull-through N				182	111
withdrawal c	apacity					
characte	eristic withdrawa	I capacity F	_{ax,k,Rk} [b] [c] [d]			
stre	ength class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	963 [b]	963 [b]	963 [b]
woo	od (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	1035 [b]	1035 [b]	1035 [b]
		mo	dification factor for k _{mod}	k _{mod} [a]		
axial wit	hdrawal capacit	y F _{ax,k,Rk} . k _m	_{od} [a] [b] [c] [d]			
stre	ength class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	963 • k _{mod}	963 • k _{mod}	963 • k _{mod}
woo	od (EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m}^3$	1035 • k _{mod}	1035 • k _{mod}	1035 • k _{mod}
ma	terial factor (NA	to) EN 1995	-1-1:2004+A1:2008	$\gamma_{\mathbf{M}} = 1,$	30 [withdrawal ca	apacity]
design	value X_d of the	axial with	drawal capacity N			
stre	ength class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	741• <i>k</i> _{mod}	741• <i>k</i> _{mod}	741• <i>k</i> _{mod}
woo	od (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	796• <i>k</i> _{mod}	796• <i>k</i> _{mod}	796• <i>k</i> _{mod}
design val	ue of the axia	I load X _d =	$X_k / \gamma_M N$	minimu	m value of th	ne rows:
strength	class	C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
wood (E	EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m}^3$	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	span b			400		
fixing o	distance a				300	

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d=l_{ef}$ / 6=26,25/6=4,30 mm);

[[]c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[[]d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

[[]e]: α is the angle between the screw axis and the grain direction

Table 6.2			t_k and design value		$\operatorname{id} X_d = X_k / \gamma_{N}$	1	
		for the combination screw and 6 mm 'Durable' boards (with the use of 6 mm strips), with $\alpha \ge 30^{\circ}$ [e]					
board thickn		or o mm strip	os), with $\alpha \geq 30$ [e]	6 mm (wit	h the use of a 6	mm strip)	(1)
	ne fixing in the bo	ard	M-middle	E-edge	C-corner	(2)	
pull-through							(3)
charac	teristic pull-throu	gh N		668	460	340	(4)
materi	al factor Rockpan	el 1/M (manufa	acturers declaration)	2,0	2,0	2,0	(5)
desig	n value X_d of the	e pull-throug	h N	334	230	170	(6)
wind suction							(7)
averag	ge wind load in N/	m²		4980	5412	5547	(8)
averaç	ge strength N			902	363	222	(9)
mater	ial factor Rockp	anel γ_{M} (mar	nufacturers declaration)	2,0	2,0	2,0	(10
desig	n value X_d of the	e pull-throug	h N	451	182	111	(12
withdrawal c	apacity						(13
charact	eristic withdrawal	capacity F _{ax,k}	,Rk [b] [c] [d]				(14
stre	ength class	C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	588 [b]	588 [b]	588 [b]	(15
woo	od (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	632 [b]	632 [b]	632 [b]	(16
		modif	ication factor for k _{mod}	k _{mod} [a]			(17
axial wit	hdrawal capacity	$F_{ax,k,Rk.}k_{mod}[$					(18
stre	ength class	C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	588 • k _{mod}	588 • k _{mod}	588 • k _{mod}	(19
woo	od (EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m}^3$	632 • k _{mod}	632 • k _{mod}	632 • k _{mod}	(20
ma	terial factor (NA to	o) EN 1995-1	-1:2004+A1:2008	$\gamma_{\rm M} = 1,30$ [withdrawal capacity]			(21
design	value X_d of the	axial withdra	awal capacity N				(22
stre	ength class	C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	452 • k _{mod}	452 • k _{mod}	452 • k _{mod}	(23
woo	od (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	486 • k _{mod}	486 • k _{mod}	486 • k _{mod}	(24
design val	ue of the axial	$load X_d = X$	$\frac{1}{k} / \gamma_{\rm M} \overline{N}$	minimu	m value of th	ne rows:	(25
strength	class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)	(26
wood (E	EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)	(27
board span b				400			(28
fixing distance a				300			(29)

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum $l_{\it ef}$ demand (d = $l_{\it ef}$ / 6 = 21,15/6 =3,52 mm) ;

[[]c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[[]d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

[[]e]: α is the angle between the screw axis and the grain direction

Characteristic axial load – Nail 32 mm / 'Durable' 6 mm / gasket / subframe wood

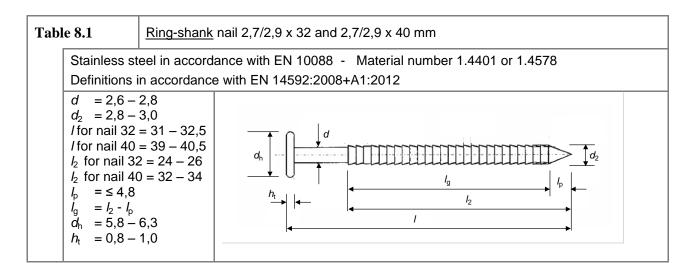
Table 7	Onaraotonot		X_k and design value			I	
		for the combination 32 mm nail and 6 mm 'Natural' boards (
l l 4l- !	with the use	of gaskets)		0 ((4)
board thi	ckness of the fixing in the b	oord		M-middle	vith the use of a	gasket) C-corner	(1)
pull-throu		Daru		M-midale	E-edge	C-comer	(2)
	aracteristic pull-thro	ugh N		455	374	311	(4)
	terial factor Rockpa		facturers declaration)	2,0	2,0	2,0	(5)
	sign value X_d of the			228	187	156	(6)
wind suc							(7)
	erage wind load in N	l/m²		3043	3406	5148	(8)
ave	erage strength N			716	314	263	(9)
			nanufacturers declaration)	2,0	2,0	2,0	(10)
	sign value X_d of the	ne pull-throu	ugh N	358	157	132	(12)
	al capacity						(13)
	acteristic withdrawa	I capacity Fa					(14)
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	217	217	217	(15)
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	259	259	259	(16)
		mod	dification factor for k _{mod}	k _{mod} [a]			(17)
axia	I withdrawal capacit	y F _{ax,k,Rk} . k _{mod}					(18)
	strength class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	217 • k _{mod}	217 • k _{mod}	217 • k _{mod}	(19)
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	259 • k _{mod}	259 • k _{mod}	259 • k _{mod}	(20)
	material factor (NA	to) EN 1995	-1-1:2004+A1:2008	$\gamma_{\rm M} = 1.3$	$\gamma_{\rm M}$ = 1,30 [withdrawal capacity]		
des	ign value X_d of the	e axial with	drawal capacity N				(22)
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	167 • k _{mod}	167 • k _{mod}	167 • k _{mod}	(23)
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	199 • k _{mod}	199 • k _{mod}	199 • k _{mod}	(24)
design	value of the axia	I load $X_d =$	X_k / $\gamma_{ m M}$ N	minim	um value of the	e rows:	(25)
strer	ngth class	C18	$\rho_{\rm k}$ = 320 kg/m ³	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)	(26)
woo	d (EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m}^3$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)	(27)
	ard span b		_	480			(28) (29)
fixi	fixing distance a				300		

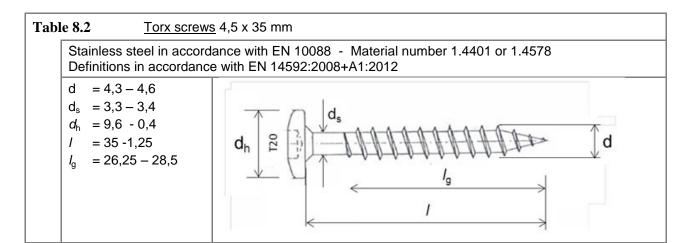
[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum $l_{\it ef}$ demand ($d=l_{\it ef}$ /8 = 18,4/8 =2,30 mm);

[[]d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 formula (8.23 a)

Characteristic axial load – Nail 40 mm / 'Durable' 6 mm / ROCKPANEL strip / subframe wood


Table 7.2		Characteristic axial load X_k and design value of the axial load $X_d = X_k / \gamma_M$ for the combination 40 mm nail and 6 mm 'Durable' boards					
	(with the use	(with the use of strips)					
board thick	ness			6 mm (wit	h the use of 6 n	nm strips)	(1)
	the fixing in the b	oard		M-middle	E-edge	C-corner	(2
pull-through				455	074	044	(3
	cteristic pull-thro			455	374	311	(4
			facturers declaration)	2,0	2,0	2,0	(5
	gn value X_d of the	ne pull-throu	ugh N	228	187	156	(6
wind suctio		1/ 2		0040	0.400	5440	(7
	ige wind load in Nige strength N	I/m²		3043 716	3406 314	5148 263	(8)
		nonal (2,0	2,0	(9
			anufacturers declaration)	2,0		· ·	(10
	gn value X_d of th	ne puil-throu	ign iv	358	157	132	(12
withdrawal			F1 3 F 13				(1:
	teristic withdrawa				1		(14
str	ength class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	271	271	271	(1
wo	ood (EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m}^3$	325	325	325	(16
		mod	dification factor for k _{mod}	k _{mod} [a]			(17
axial w	ithdrawal capacit	y F _{ax,k,Rk} . k _{mod}	[a] [b] [d]				(18
str	ength class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	271 • k _{mod}	271 • k _{mod}	271 • k _{mod}	(19
wo	ood (EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m}^3$	325 • k _{mod}	325 • k _{mod}	325 • k _{mod}	(20
ma	aterial factor (NA	to) EN 1995	-1-1:2004+A1:2008	$\gamma_{\rm M}$ = 1,30 [withdrawal capacity]			(21
desig	n value X_d of the	e axial with	drawal capacity N				(22
stı	ength class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	209 • k _{mod}	209 • k _{mod}	209 • k _{mod}	(23
wo	ood (EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m}^3$	250 • k _{mod}	250 • k _{mod}	250 • k _{mod}	(24
design va	lue of the axia	I load $X_d = X_d$	X_k / $\gamma_{ m M}$ N	minim	ım value of the	e rows:	(25
strengt	h class	C18	$\rho_{\rm k} = 320 \; {\rm kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)	(26
wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)	(27
	l span b		_	480			(28
fixing	distance a			300			(29


[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d=l_{ef}$ /8 = 20,6/8 =2,57 mm);

[[]d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 formula (8.23 a)

Annex 3 Fastener specification for wooden subframes

Annex 4

Table 9 - Control plan for the manufacturer

Nr	Subject/type of control	Test or control method	Criteria, if any	Minimum number of samples	Minimum frequency of control		
(1)	(2)	(3)	(4)	(5)	(6)		
	Factory production control (FPC) [including testing of samples in accordance with a prescribed test plan]						
1	Board thickness	EN 325	6 ± 0,3 mm	40 [a]	One board for every 200 boards produced		
2	Density	EN 323	$1050 \pm 150 \text{ kg/m}^3$	40 [a]	One board for every 200 boards produced		
3	Bending strength dry parallel and perpendicular to the production direction	EN 310	$f_{05}\geq 27\;N/mm^2$	20 (length) + 20 (width) [a]	One board for every 200 boards produced		
4	Bending strength after ageing parallel and perpendicular to the production direction	EN 310 Ageing in accordance with description in table 10		3 (length) + 2 (width)	One board for every 200 boards produced		
5	Water absorption after 4 days	see table 10	≤ 2 weight % after 4 days; if sample fails, the 2 nd sample must be tested.	1 (2 in the case of fail)	One board for every 200 boards produced		
6	Organic material content (resin binder)	Glowing at 650° for at least 60 min. Remark: time depends on the type of oven	$12,0 \pm 1,5$ weight %	40 [a]	One board for every 200 boards produced		
7	Reaction to fire [b]	EN 13162 loss on ignition Table B.2	Table 1 EN 13501-1	Three specimens [b]	every two years		
		controls are carried d manufacturer as p	out by the sub-supplier a	and the docume	entation is		
8	Dowel-type fasten structures		EN 14592, Annex ZA.2 Procedure for attestation	Every 3 years			
9	EPDM foam gaske	et	Manufacturers declaration	Every 3 years			
[b] Sr	[a] amount of samples from four different boards [b] Small components, e.g. gaskets and seals shall be considered on the basis of EOTA Technical Report TR 021						

Annex 5

Table 10 - Special methods of control and testing used for the evaluation

Bending stre	ength after ageing
	Ageing of the 5 test pieces in (tab)water from 70°C (with surface tension changing additives :
	for instance 0,5 ml Triton per litre) for 30 minutes.
	Determination of the bending strength in accordance with EN-310 within 20 minutes after the
	ageing period in a test room with an air temperature between 17 and 23°C.
Water absorp	
	The water absorption by the edges must be determined on test pieces W1 in the size 50*400 mm. The dimensions and the weight of the test pieces is determined.
	The sample is wrapped with aluminium foil with the exception of one 50 mm edge.
	The test pieces are vertically placed in a bucket with tab water, with the 50 mm size without aluminium foil horizontally in the water. The edge must be 1 to 5 mm in the water (without additives).
	Test conditions:
	Water temperature 17 - 23 °C
	Room temperature 17 - 23 °C
	test piece W1 ———————————————————————————————————

Table 11 - Control plan for the notified body; corner stones

Nr	Subject/type of control	Test or control method	Criteria, if any	Minimum number of samples	Minimum frequency of control		
(1)	(2)	(3)	(4)	(5)	(6)		
	Initial type-testing	g of the prod	uct (ITT)				
1	Testing to determine the product performance has been carried out under the responsibility of the TAB as part of the procedure to issue the ETA						
]	Initial inspection of factory and	l factory pro	duction control ((FPC)			
1	See table 9						
Continuous	Continuous surveillance, judgment and assessment of factory production control (FPC)						
1	See table 9						

Annex 6

Table 12 – Impact resistance: Definition of use categories

Use category	Description
I	A zone readily accessible at ground level to the public and vulnerable to hard body impacts but not subjected to abnormally rough use.
II	A zone liable to impacts from thrown or kicked objects, but in public locations where the height of the kit will limit the size of the impact; or at lower levels where access to the building is primarily to those with some incentive to exercise care.
III	A zone not likely to be damaged by normal impacts caused by people or by thrown or kicked objects.
IV	A zone out of reach from ground level

The hard body impact with steel ball represents the action from heavy, non-deformable objects, which accidentally hit the kit.